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Abstract 

Overtaking a slow lead vehicle is a complex maneuver because of the variety of overtaking conditions and 

driver behavior. In this study, two novel prediction models for overtaking behavior are proposed. These 

models are derived based on multi-input multi-output adaptive neuro-fuzzy inference system (MANFIS). 

They are validated at microscopic level and are able to simulate and predict the future behavior of the 

overtaking vehicle in real traffic flow. In these models, the kinematic features of Driver-Vehicle-Units 

(DVUs) such as distance, velocity, and acceleration are used. Unlike the previous models, where some 

variables of the two involved vehicles are considered to be constant, in this paper, instantaneous values of 

the variables are considered. The first model predicts the future value of the longitudinal acceleration and 

the movement angle of the overtaking vehicle. The other model predicts the overtaking trajectory for the 

overtaking vehicle. The second model is designed for two different vehicle classes: motorcycles and autos. 

Also, the result of the trajectory prediction model is compared with the result of other models. This 

comparison provides a better chance to analyze the performance of this model. Using the field data, the 

outputs of the MANFIS models are validated and compared with the real traffic dataset. The simulation 

results show that these two MANFIS models have a very close compatibility with the field data and reflect 

the situation of the traffic flow in a more realistic way. These models can be used for all types of drivers 

and vehicles and also in other roads and are not limited to certain types of situations. The proposed models 

can be employed in ITS applications and the like. 

 Keywords: Overtaking Maneuver, ANFIS, Modeling, Intelligent Automation.

1. Introduction 

Driver behavior is an issue that contributes 

directly or indirectly to the traffic congestion and 

safety on the road. These behaviors can be 

categorized into three main behaviors; car 

following  [1], lane changing  [2] and overtaking. Here, 

the concentration is on the overtaking behavior as a 

challenging behavior on highways in comparison with 

other driving behaviors like car following and lane 

changing. In a microscopic perspective, overtaking 

can keep the velocity of the high-speed vehicle; in a 

macroscopic perspective, overtaking can improve the 

traffic flow rate by reducing the negative impact 

generated by low-speed vehicle. Overtaking is a 

complex driving behavior since it includes observing, 

information processing, decision making, planning 

and maneuvering. An overtaking maneuver consists 

of three phases: a) diverting from the original lane, b) 

driving straight in the adjacent lane, and c) returning 

to the lane [3]. The phases of the overtaking 
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maneuver are shown in Fig. 1 [4]. These three phases 

can be called in short: lane changing, overtaking and 

returning. From this point, it is indicated that the 

relation between lane changing and overtaking is 

 

 

 
 

Fig1. The overtaking maneuver and its two lane changes [4]. 

intimate, lane changing is an important part of 

overtaking process, and it is the base of overtaking, 

because it is necessary to change the lane before 

overtaking [5]. 

Using intelligent systems in modeling the 

behavior of vehicles is one of the approaches to make 

overtaking maneuvers safer.  To be able to design or 

develop these solutions, accurate overtaking 

maneuver data are required. These data are useful for 

the development of traffic micro simulations 

models  [6]. Models developed at microscopic levels, 

such as the models presented here, are being 

progressively used more and more by ITS specialists 

to develop new transportation achievements. 

In this paper, two innovative multi-input multi-

output ANFIS (MANFIS) models for modeling and 

prediction of the driver-vehicle unit (DVU) behavior 

in overtaking scenarios are presented. The remaining 

parts of this paper are organized as follows: Section II 

brings in a brief review on previous studies of 

overtaking modeling. Section III starts with an 

introduction on the adaptive neuro-fuzzy inference 

systems (ANFIS), followed by the introduction of 

multi-input multi-Output adaptive neuro-fuzzy 

inference systems (MANFIS). Next, the new 

MANFIS overtaking models are presented. In 

sections IV, these models are evaluated through 

different error criteria, and the conclusion is given in 

Section V. 

2. Brief Review on Overtaking Models 

The study on overtaking behavior has not been as 

extensive as the study on other driving behaviors such 

as car following or lane changing. This is due to the 

high complexity of this maneuver. The available 

studies concentrate on diverse aspects of this 

behavior. The main object of some of these studies 

was this behavior, but some were focused on other 

driving behaviors and just mentioned a little about 

overtaking. Some of these studies are mentioned here 

in summary. Mahdi stated that the overtaking 

maneuver commenced when the overtaking vehicle 

first crossed the centerline and completes when the 

vehicle is clear of the opposing traffic lane [7]. 

Matson and Forbes used photographic techniques to 

measure the distances between the overtaking and the 

overtaken vehicle at the start and the end of the 

overtaking maneuver. So they were able to calculate 

the overtaking distance [8]. Roozenburg suggested 

that there are a number of input variables to develop a 

mathematical model of the overtaking behavior. The 

variables can be the impeder vehicle speed, oncoming 

vehicle speed, decision time of passer, headway 

between passer and impeder at start of the maneuver, 

safety margin between passer and oncoming vehicles 

at completion of maneuver and vehicle acceleration 

[9]. Mota believed that one of the reasons that the 

overtaking maneuver is a risky one is due to the lack 

of the driver’s attention. The driver’s focus is usually 

on his way forwards or sometimes he (or she) does 

not use the rear-view mirror [10]. Crawford has 

concluded that the drivers should not hesitate to 

commence the overtaking maneuver as it has a 

negative impact on road safety and they will take a 

longer time to act [11]. Gordon and Mart claimed that 

drivers are unable to estimate the overtaking distances 

and safety margins correctly because these 

calculations depend on the speed of the involved 

vehicles especially the overtaken vehicle [12]. Jenkins 

et. al. studied overtaking maneuver on a two-way 

two-lane roadway. They classified this behavior on 

the basis of a quantitative description of overtaking 

behavior by analyzing data collected during a 

overtaking experiment conducted in a driving 

simulator [13]. Jamson et al. investigated how 

mandatory and voluntary intelligent speed adaptation 

might affect a driver’s overtaking decisions on rural 

roads, by presenting drivers with a variety of 

overtaking scenarios designed to evaluate both the 

frequency and safety of the maneuvers [14]. Bar-Gera 

et al. assessed the speed differential threshold-if there 
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is one-at which drivers decide to overtake a lead 

vehicle [15]. Hegeman et al. studied a microscopic 

traffic simulation of the potential effects of an 

overtaking assistant for two-lane rural roads. The 

overtaking assistant was developed to support 

drivers in judging whether or not an overtaking 

opportunity can be accepted based on the distance to 

the next oncoming vehicle [16]. Clarke et. al studied 

overtaking road accidents involving overtaking 

maneuvers. They distinguished ten types of 

overtaking accidents and discussed three in detail: 

collision with a right-turning vehicle, which tends to 

occur either because a young driver makes a faulty 

overtaking decision, or an older driver makes a faulty 

right turn; head-on collision, and the ‘return-and-lose-

control’ accident, which is associated particularly 

with young drivers [17]. Farah et al. tested the 

hypothesis that the frequency of overtaking 

maneuvers on a driving simulator is associated with a 

faulty decision making style in the Iowa Gambling 

Task (IGT), a popular decision task employed for 

assessing cognitive impulsivity [18]. 

Another category of studies on overtaking present 

a model for different parameters of this behavior. Due 

to the variety of the factors that affect this maneuver, 

the presented models consider different factors. 

Besides, the approaches to study this behavior are 

different. Cellular automata modeling [19-24] and 

differential equation modeling [25, 26] are examples 

of the main approaches to study overtaking. In 

addition, the system theoretic approach and the neural 

network method are applied to study the human 

operating behavior in overtaking procedure [3, 27, 

28]. Recently, the overtaking distance-based approach 

has also attracted attention [29-32]. In this section, a 

brief review on some of the previously proposed 

overtaking models is presented. 

In 2003, Naranjo et al. offered a rule for 

overtaking distance based on the least square method. 

The inputs of the rule were the velocity of the two 

involved vehicles in an overtaking maneuver [33]. In 

2004, Shamir offered a smooth and ergonomic 

optimal lane-change trajectory to be used under 

normal conditions for overtaking maneuvers. The 

relatively simple mathematical model for each lane-

change trajectory was based on minimizing the total 

kinetic energy during the maneuver, superimposed on 

a “minimum-jerk trajectory” [34]. In 2005, Hassan 

developed a mathematical model based on the 

overtaking parameters which affect the behavior. 

Overtaking vehicle speed was chosen as a dependent 

variable since it describes the behavior of the 

overtaking drivers and it depends on the other 

variables. The best subset regression method was 

chosen to select the independent variables which 

entered the relationships. It concluded that there were 

only five factors that affected the overtaking 

maneuver. These factors were the speed of the 

overtaken vehicle, decision time, start headway, 

overtaking distance and acceleration of the overtaking 

vehicle. Then, a mathematical model was developed 

to calculate the overtaking vehicle speed using these 

factors [35]. In 2007, Tang et al. presented three rules 

for the overtaking maneuver. These rules give the 

time required for completing an overtaking maneuver, 

the time which the overtaking vehicle loses during 

overtaking, and the overtaking distance of vehicle 

[36]. In 2010, Chen et al. presented a model based on 

the cellular automata method (CA method) for two-

lane traffic flow. In this model, the effect of vehicular 

density and signal cycle time on the mean velocity 

and the mean overtaking times of the traffic flow 

were analyzed [37]. In 2008, Naranjo et. al offered a 

rule to estimate the distance of an overtaking 

maneuver [38]. In 2000, Polus et al. developed a 

model to estimate passing sight distance of the 

overtaking process [39]. 

As mentioned above, the study of overtaking 

models has been widespread. But neither of the 

presented models is able to present a model which is 

completely accordant to the real behavior. Being 

accordant means being compatible and close with real 

behavior. Previous works were presented based on 

mathematical equations, and only one such study 

presented a model based on real traffic data [35] 

which used the data of only ten drivers and it is said 

that due to the lack of data, the presented model may 

suffer from inaccuracy and validity issues. These 

models have mostly considered some assumptions to 

simplify their modeling. For example, all of them had 

considered the velocity of the overtaken vehicle to be 

constant during the whole maneuver. These 

assumptions make the performance of the previously 

presented models far from the real traffic behaviors. 

Due to the variety of the factors that affect this 

maneuver, each model considers different factors and 

offer distinctive rules. Besides, these rules are 

calculated according to various methods. So, 

complexity of this maneuver makes it difficult to 

present a model which is close to the real behavior to 

an acceptable extent. These models could be more 

reliable if they had considered most of the major 

factors that affect this behavior. In the meanwhile, it 

seems more beneficiary if they had taken into account 

the instantaneous value of the factors instead of a 

constant value [40]. Using instantaneous values of the 

variables definitely makes the performance of the 

models closer to real traffic behaviors so it is a 

beneficiary decision. 
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3. MANFIS Overtaking Behavior Model Design 

The basics of the adaptive neuro-fuzzy inference 

system network architecture applied for the 

  

 

 

 
 

Fig2. Architecture of ANFIS model [42] 

 

overtaking prediction system is introduced here. 

ANFIS enhances fuzzy inference system with self-

learning capability. An adaptive network is a 

multilayer feed-forward network where each node 

performs a particular node function on incoming 

signals. It is characterized with a set of parameters 

related to that node. To reflect different adaptive 

capabilities, both square and circle node symbols are 

used. Examples of these nodes can be seen in Fig. 3. 

A square node (adaptive node) has parameters, while 

a circle node (fixed node) doesn’t have. The 

parameter set of an adaptive network is the union of 

the parameter sets associated with each adaptive 

node. To achieve a desired input-output mapping, 

these parameters are updated according to given 

training data and a recursive least square (RLS) based 

learning procedure [41]. 

In this section, first, the MANFIS structure will be 

introduced. Then, details on the datasets of overtaking 

behavior, used to design the models, are explained. At 

the end, the two models improved in this study are 

proposed. 

3. A. Multiple Adaptive Neuro-Fuzzy Inference 

System (MANFIS) 

Fuzzy logic can be a potential method dealing 

with structural and parametric uncertainties in the 

overtaking behavior. Additionally, artificial neural 

networks can be favorable tools providing the 

possibility of exploiting real observed data while 

developing the models. Neuro-fuzzy models, such as 

ANFIS, are combinations of artificial neural networks 

and fuzzy inference systems, simultaneously using the 

advantages of both methods. Integration of human 

expert knowledge expressed by linguistic variables, 

and learning based on the data are powerful tools 

enabling neuro-fuzzy models to deal with 

uncertainties and inaccuracies [40]. 

The acronym ANFIS is the abbreviation for 

adaptive neuro-fuzzy inference system. Using a given 

input/output dataset, ANFIS constructs a Fuzzy 

Inference System (FIS) whose membership function 

parameters are tuned (adjusted) using either a back-

propagation algorithm alone or in combination with a 

least square type of method. This adjustment allows 

the fuzzy inference systems to learn from the data 

they are modeling. The parameters associated with 

the membership functions changes through the 

learning process. The computation of these 

parameters (or their adjustment) is facilitated by a 

gradient vector. This gradient vector provides a 

measure of how well the Fuzzy inference system is 

modeling the input/output data for a given set of 

parameters. When the gradient vector is obtained, any 

of several optimization routines can be applied in 

order to adjust the parameters to reduce some error 

measure. This error measure is usually defined by the 

sum of the squared difference between actual and 

desired outputs [41, 42]. 

ANFIS model is one of the implementations of a 

first order Sugeno fuzzy inference system. A typical 

Sugeno Fuzzy rule is expressed in the following form: 

 

 1 1 2 2 1 2        ...     ( , ,..., ).m m mIF x is A ANDx is A ANDx is A THEN y f x x x=
 

       (1) 

where ��, ��, … , ��  are input variables and 

��, ��, … , �� are fuzzy sets. When y is a constant, we 

obtain a zero-order Sugeno fuzzy model in which the 

consequent of a rule is specified by a singleton, and 

when y is a first-order polynomial, that:
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0 1 1 2 2 ...
m m

y k k x k x k x= + + + +
        (2)

 

we obtain a first-order Sugeno fuzzy model. The 

ANFIS model is shown in Fig. 2. It is a multi-input, 

single-output model. 

The architecture and learning rule of ANFIS had 

been described in detail by [44], and can be 

summarized as follo

   Layer 1: is the input layer. Neurons in this layer 

simply pass external crisp signals to Layer 2. 

Layer 2: is the fuzzification layer. Neurons in this 

layer perform fuzzification. Fuzzification comprises 

the process of transforming crisp values into grades of 

membership for linguistic terms of fuzzy sets. The 

membership function is used to associate a grade to 

each linguistic term. Every node in this layer is a 

circle node labeled п, which multiplies the incoming 

signals and sends the product out. Each node output 

represents the firing strength of a rule. 

Layer 3: is the rule layer. Each neuron in this layer 

corresponds to a single Sugeno-type fuzzy rule. A 

rule neuron receives inputs from the respective 

fuzzification neurons and calculates the firing 

strength of the rule it represents. 

1

k

i jij
y x

=
= ∏     (3) 

1 1 11 A B
y µ µ µ= × =
∏    (4) 

where the value of 1
µ

represents the firing 

strength, or the truth value, of Rule 1 and according to 

Fig. 2, y∏�is the output of the first node in layer 3. 

Layer 4: is the normalization layer. Each neuron 

in this layer receives inputs from all neurons in the 

rule layer, and calculates the normalized firing 

strength of a given rule. 

The normalized firing strength is the ratio of the 

firing strength of a given rule to the sum of firing 

strengths of all rules. It represents the contribution of 

a given rule to the final result. Thus, the output of 

neuron i in Layer 4 is determined as, 

1 1

ij i

i in n

ij jj j

x
y

x

µ
µ

µ
= =

= = =
∑ ∑        (5) 

Where i
y

 is the output of neuron i in Layer 4. 

Layer 5: is the defuzzification layer. Each neuron 

in this layer is connected to the respective 

normalization neuron, and also receives initial inputs, 

x1 and x2. A defuzzification neuron calculates the 

weighted consequent value of a given rule as: 

[ ] [ ]0 1 2 0 1 21 2 1 2i i i i i i i i iy x k k x k x k k x k xµ= + + = + +  
           (6) 

Where ��  is the input and ��  is the output of 

defuzzification neuron i in Layer 5, and ��, �� and 

�� is a set of consequent parameters of rule i. 

Layer 6: is represented by a single summation 

neuron. This neuron calculates the sum of outputs of 

all defuzzification neurons and produces the overall 

ANFIS output y [43, 44]. 

[ ]0 1 21 1
1 2

n n

i i i i ii i
y x k k x k xµ

= =
= = + +∑ ∑  

               (7) 

In the ANFIS training algorithm suggested by 

[44], both antecedent parameters and consequent 

parameters are optimized. In the forward pass, the 

consequent parameters are adjusted while the 

antecedent parameters remain fixed. In the backward 

pass, the antecedent parameters are tuned while the 

consequent parameters are kept fixed. The details of 

the hybrid learning procedure that is used in an 

ANFIS are given in [41-45]. 

ANFIS uses the advantages of neural networks 

and fuzzy systems simultaneously. Some of the 

advantages of ANFIS in comparison with NN and 

fuzzy systems are: Faster convergence than typical 

feed forward neural networks, smaller size training 

set, model compactness (smaller number of rules than 

using labels), automatic fuzzy logic controller 

parametric tuning and smoothness guaranteed by 

interpolation. On the other hand, ANFIS has its own 

disadvantages too. Some of them are surface 

oscillations around points (caused by high partition 

number), spatial exponential complexity, coefficient 

signs not always consistent with underlying 

monotonic relations, not possible to represent known 

monotonic relations, cannot use trapezoids nor "Min", 

symmetric error treatment, great outliers influence, 

and "Awkward" interpolation between slopes of 

different sign. 

However, the major disadvantage of ANFIS is that 

it can have only one output. Since multi-output 

systems are more frequent than single output ones, 

this issue influences the efficiency of ANFIS. In order 

to work out this problem, multi-output model can be 

designed by connecting several single output models 

[41]. In other words, putting as many ANFIS models 

side by side, as there are required outputs is an 

approach of having multiple outputs [45]. The 

architecture of a two-output MANFIS model is shown 

in Fig. 3. 

MANFIS has all the advantages of ANFIS. 

Besides, fewer numbers of training sets are required 

in MANFIS to achieve the same error of single 

ANFIS. Therefore, faster and simpler solutions can be 
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obtained based on MANFIS. Also, a MANFIS model 

can improve to be a single-input-multi-output model 

[41]. In this study, MANFIS is used to effectively 

predict the future behavior of an overtaking maneuver 

[41-44]. 

 

3. B. Datasets 

Real overtaking data from US Federal Highway 

Administration’s NGSIM datasets are used to train 

the MANFIS prediction models [46]. The NGSIM 

datasets represent the most detailed and accurate field 

data collected to date for traffic micro simulation 

  

 

 
Fig3. . A two-output MANFIS structure [45] 

 

 
 

Fig4. A segment of Interstate 101 highway in Emeryville, San Francisco, California [47]. 

 

 

research and development. In June 2005, a dataset 

of trajectory data of vehicles travelling during the 

morning peak period on a segment of Interstate 101 

highway in Emeryville (San Francisco), California 

has been made using eight cameras on top of the 

154m tall 10 Universal City Plaza next to the 

Hollywood Freeway US-101. On a road section of 

640m, 6101 vehicle trajectories have been recorded in 

three consecutive 15-minute intervals. This highway 

has 8 lanes. Lane 1 is the farthest left lane; lane 5 is 

the farthest right lane. Lane 6 is the auxiliary lane 

between Ventura Boulevard on-ramp and the 

Cahuenga Boulevard off-ramp. Lane 7 is the on-ramp 

at Ventura Boulevard, and Lane 8 is the off-ramp at 

Cahuenga Boulevard. 

This dataset has been published as the US-101 

Dataset. The dataset consists of detailed vehicle 

trajectory data on a merge section of eastbound US-

101, as shown in Fig. 4. The data is collected in 0.1 

second intervals. Any measured sample in this dataset 

has 18 features of each driver-vehicle unit in any 

sample time, such as longitudinal and lateral position, 

velocity, acceleration, time, number of lanes, vehicle 

class, front vehicle and etc [47]. 

The other dataset was published as the I-80 

Dataset. Researchers for the NGSIM program 

collected detailed vehicle trajectory data on eastbound 

I-80 in the San Francisco Bay area in Emeryville, CA, 

as shown in Fig. 5, on April 13, 2005. The study area 

was approximately 500 meters (1,640 feet) in length 

and consisted of six freeway lanes, including a high-

 [
 D

ow
nl

oa
de

d 
fr

om
 ie

.iu
st

.a
c.

ir
 o

n 
20

25
-0

5-
30

 ]
 

                             6 / 19

https://ie.iust.ac.ir/ijae/article-1-192-en.html


 399       MANFIS Based Modeling and Prediction …… 

International Journal of Automotive Engineering  Vol. 3, Number 2, June 2013  

occupancy vehicle (HOV) lane. I-80 highway has 9 

lanes. Lane 1 is the farthest left lane; lane 6 is the 

farthest right lane. Lane 7 is the on-ramp at Powell 

Street, and Lane 9 is the shoulder on the right-side. 

Seven synchronized digital video cameras, mounted 

from the top of a 30-story building adjacent to the 

freeway, recorded vehicles passing through the study 

area. This vehicle trajectory data provided the precise 

location of each vehicle within the study area every 

one-tenth of a second, resulting in detailed lane 

positions and locations relative to other vehicles. A 

total of 45 minutes of data are available in the full 

dataset, segmented into three 15-minute periods. 

These periods represent the buildup of congestion, or 

the transition between uncongested and congested 

conditions, and full congestion during the peak period 

[48]. 

For this study, only the lanes with straight path 

were used since the overtaking behavior is illegal in 

auxiliary lanes, on-ramps and off-ramps. In both 

highways, lane 1 is the farthest left lane. From the 

point that the first camera can see the highway, data 

recording starts. The NGSim program has decided to 

choose the farthest position of lane 1 to be the zero of 

coordinate X and Y. 

 

 
 

Fig5. A segment of eastbound I-80 in the San Francisco Bay area in Emeryville, California [48]. 

 

 

Fig6. Comparison of unfiltered and filtered data: (a) Longitudinal acceleration, (b) Movement Angle.
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Finding and extracting the data of the vehicles 

with an overtaking behavior from the datasets was 

done by checking the column of the lane number of 

each vehicle. When a vehicle performs an overtaking 

behavior it travels from its initial lane to its left 

adjacent lane and returns back to its initial lane. So, a 

vehicle which had such variations in its lane number 

column was extracted. For this study, only the data of 

the vehicles in the lanes with straight path of the 

highways were used since the overtaking behavior is 

illegal in auxiliary lanes, merge points, near to a turn, 

curve, hill, in high-occupancy vehicle lanes, High 

occupancy/toll lanes, on-ramps and off-ramps 

according to traffic rules and regulations. Therefore, 

the available overtaking maneuvers were all 

performed in normal driving situations of the 

highways. But they were performed in different lanes 

of the highways with different velocities. So, a wide 

range of velocities were observed in the extracted 

data of overtaking vehicles which makes our models 

general ones. 

The datasets are for two highways which have 

two-way traffic flows. However, consider a vehicle 

which is moving along in one of the lanes from one 

side of the highway. The opposing traffic flow does 

not influence the behavior of the vehicle in question, 

and consequently, any data corresponding to the 

motion of the opposing vehicles are not included in 

the data of this vehicle. Therefore, the passing lane is 

not in the forward travel lane and no opposing vehicle 

exists in this lane. 

The data extracted from the datasets seem to be 

unfiltered and exhibit some noise artifacts, so these 

data must be filtered like [49, 51]. A moving average 

filter has been designed and applied to all data before 

any further data analysis. In the first model improved 

in this study, the longitudinal acceleration and the 

movement angle of the overtaking vehicle is 

predicted. So, at first, comparison of the unfiltered 

and filtered data of the longitudinal acceleration and 

movement angle of the overtaking vehicle are shown 

in Fig. 6. 

3.C. Movement Angle of the Overtaking Vehicle 

The vehicle’s movement angle (Ɵ), as shown in 

Fig. 7, is the angle between the vertical axis of the 

vehicle and the imaginary line through the direction 

of the road. This angle is different from the steering 

angle of the vehicle. When the overtaking vehicle 

deviates to the left from the straight direction of the 

road, the movement angle will have a negative value. 

But deviation to the right, leads to a positive value for 

this angle. 

In the available datasets, there is no data available 

for this angle. But, it can be approximated from the 

coordinates of the previous and present position of the 

overtaking vehicle. The movement angle equation is 

shown in equation (8). Calculating the movement 

angle is not time-consuming. The lateral and 

longitudinal coordinates of vehicles are available in 

the datasets. For all the vehicles, an m-file code was 

written in MATLAB that computed the movement 

angle according to the above equation. It took less 

than a few seconds to compute the movement angle of 

all the vehicles  

 

( ) ( 1)
arctan( )

( ) ( 1)

x t x t

y t y t
θ

− −
=

− −           (8)

 

           
 

Fig7. The movement angle of the overtaking vehicle.
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Table I. Inputs and Outputs of the Longitudinal acceleration and Movement Angle Prediction Model 

Symbol Parameter Name Type 

����� = ����� − ����� relative lateral coordinate input 

����� = ����� − ����� relative longitudinal coordinate input 

����� = ����� − ����� relative velocity input 

����� longitudinal acceleration input 

Ɵ���� movement angle input 

���� + 1� longitudinal acceleration output 

Ɵ��� + 1� movement angle output 

 

Table II. Inputs and Outputs of the Trajectory Prediction Model 

Symbol Parameter Name Type 

����� lateral coordinate input 

����� longitudinal coordinate input 

����� velocity input 

����� longitudinal acceleration input 

Ɵ���� movement angle input 

���� + 1� lateral coordinate output 

���� + 1� longitudinal coordinate output 

 

 

3. D. Two MANFIS Model Design 

In this study, two MANFIS model are designed. 

The first model predicts the longitudinal acceleration 

and the movement angle of the overtaking vehicle. 

The second model predicts the trajectory of an 

overtaking maneuver. As stated in section I, each of 

the developed models has two multiple-input-single-

output ANFIS model, which make a multiple-input-

multiple-output adaptive neuro-fuzzy inference 

system called MANFIS. To achieve an accurate 

prediction hybrid algorithm is used to train each 

ANFIS model. 

From the available datasets, the data of about 

1500 vehicles which had an overtaking behavior were 

extracted. In the development of the MANFIS 

prediction models, the available data are usually 

divided into two randomly selected subsets. The first 

subset is known as the training and testing dataset. 

This dataset is used to develop and calibrate the 

model. The second data subset (known as the 

validation dataset), which was not used in the 

development of the model, is utilized to validate the 

performance of the trained model. For this paper, 

70% of the master dataset was used for training 

purposes. The remaining 30% was set aside for 

testing the models. The designed models were tested 

with all the data of the test vehicles. But it was 

impossible to show the results of all of them in the 

paper. The result of the models for only one of them, 

chosen randomly, is shown and the error criteria for 5 

of them are shown in the error table. In the following 

parts, each of the developed models will be described 

in detail [51]. 

3. D.1 Longitudinal acceleration and Movement 

Angle Prediction Model 

This model predicts the longitudinal acceleration 

and the movement angle of the overtaking vehicle. 

The inputs and outputs of this model are shown in 

TABLE I with their notations. The MANFIS system 

applied for this prediction model has five inputs and 2 

outputs. Notice that it is assumed that the movement 

angle of the overtaking vehicle do not directly depend 

on the longitudinal acceleration. These inputs are 

relative lateral and longitudinal distance, relative 

velocity, and also the longitudinal acceleration and 

the movement angle of the overtaking vehicle. As 

mentioned before, this MANFIS model is made of 
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two ANFIS models that each of them predicts one of 

the outputs. Three gaussmf membership functions 

were chosen for each input and linear type was 

chosen for the output. Also, for the optimization 

algorithm, hybrid showed a better result. The rule 

base contains 243 fuzzy if-then rules of Takagi-

Sugeno’s type [52]. 

3. D.2. Trajectory Prediction Model 

This model predicts the trajectory of the 

overtaking vehicle. Since the available datasets are 

consisted of the data of motorcycles and autos, in this 

part two trajectory prediction model are designed. 

The reason that the previous model is not designed for 

each of these vehicle types is due to the dynamic of a 

motorcycle and an auto. Studying the data of these 

vehicles represents that the range of the longitudinal 

acceleration and the movement angle of an overtaking 

motorcycle doesn’t have much difference with the 

range of these parameters of an overtaking auto. 

Therefore, designing only one model is satisfactory 

for both vehicle classes. But, since the size of a 

motorcycle is different from the size of an auto, the 

overtaking trajectories will be different consequently. 

This difference is prominent in the lateral coordinate 

of the overtaking trajectory. A motorcycle can 

complete an overtaking maneuver by traveling only 

about 0.5m to the left, but, an auto needs to travel 

about 3-4m to the left. 

However, the structure of the ANFIS models used 

to make the trajectory prediction model for these two 

vehicle classes are the same. The only difference is in 

the data used to train the ANFIS models. The inputs 

and outputs of the trajectory prediction model are 

shown in TABLE II with their notations. The fuzzy 

inference system applied for prediction model has 

five inputs and 2 outputs. These inputs are lateral and 

longitudinal distance, velocity, longitudinal 

acceleration and the movement angle of the 

overtaking vehicle. This MANFIS model is also made 

of two ANFIS models that each of them predicts one 

of the outputs. There are three gaussmf membership 

functions for each input. The rule base contains 243 

fuzzy if-then rules of Takagi-Sugeno’s type. 

4. Discussion and Results 

To evaluate the competence of MANFIS estimator 

systems, the validation dataset is used for each 

developed model. The matrix of the validation data is 

divided to two groups, the input columns and the 

output columns. The input columns are fed as the 

inputs of the models. Then, the output of the model is 

compared to the real output, which are the output 

columns of the validation data. The evaluation of the 

proposed models is brought in the following parts. 

 

(a) 

 

(b) 

Fig8. Comparison of the MANFIS model and real data: (a) longitudinal acceleration, (b) Movement Angle. 
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4.A. Evaluation of the Longitudinal 

Acceleration and Movement Angle 

Prediction Model 

The comparison of the output of the longitudinal 

acceleration and movement angle prediction model 

with real data is shown in Fig. 8. This figure shows 

the data of only one test vehicle and this data wasn’t 

in the training dataset of the model. 

To examine the performance of the developed 

model, various criteria are used to calculate errors. 

The mean square error (MSE) of an estimator, 

according to equation (9), is one of the many ways to 

quantify the difference between values implied by an 

estimator and the true values of the quantity being 

estimated. Root mean squares error (RMSE), 

according to equation (10), is a criterion for 

comparing error dimension in various models. The 

normalized mean square error (NMSE), according to 

equation (11), is an estimator of the overall deviations 

between predicted and measured values. The mean 

absolute error (MAE), according to equation (12), is a 

quantity used to measure how close forecasts or 

predictions are to the eventual outcomes. The 

Symmetric mean absolute percentage error (SMAPE), 

according to equation (13), is an accuracy measure 

based on percentage (or relative) errors. In these 

equations, ��  shows the real value of the variable 

being modeled (observed data), ���  shows the real 

value of variable modeled by the model and �̅ is the 

real mean value of the variable and N is the number 

of test observations [53]. 

2
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−
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∑
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Errors in modeling the longitudinal acceleration 

output and the movement angle output considering 

these criteria are summarized in TABLE III and 

TABLE IV. The last column of tables shows the 

mean value of each error criteria. 

4. B. Evaluation of the Trajectory Prediction 

Model 

The comparisons of the output of the MANFIS 

model with real data and are shown below. Fig. 9 

shows the trajectory of the two vehicle classes for one 

vehicle of each class. This figure shows the data of 

only one test motorcycle and one test auto and these 

data weren’t in the training dataset of the models. We 

could simply show the result of the trajectory model 

for the whole test dataset. But since the overtaking 

behavior is a behavior with a specific trajectory, we 

wanted to show the exact trajectory of each vehicle to 

present the longitudinal and lateral displacement more 

clearly. In other words, showing the trajectory of each 

vehicle separately shows the 3 phases of the behavior 

better.

 
Table III. Result of Error for MANFIS Overtaking Model: Longitudinal Acceleration 

Mean Test 5 Test 4 Test 3 Test 2 Test 1 Criteria 
0.034 0.0300 0.0351 0.0447 0.0580 0.0034 MSE 

0.174 0.1731 0.1873 0.2114 0.2409 0.0581 RMSE 

0.053 0.0216 0.0372 0.0387 0.1663 0.0020 NMSE 

0.122 0.1270 0.1455 0.0610 0.2457 0.0303 MAE 

0.168 0.3258 0.2464 0.0515 0.0977 0.1170 SMAPE 

 
TABLE IV .Result of Error for MANFIS Overtaking Model: Movement Angle 

Mean Test 5 Test 4 Test 3 Test 2 Test 1 Criteria 
0.013 0.0115 0.0095 0.0028 0.0405 6.7e-005 MSE 

0.093 0.1072 0.0973 0.0530 0.2012 0.0082 RMSE 

0.018 0.0144 0.0216 0.0062 0.0456 4.8e-004 NMSE 

0.056 0.0823 0.0677 0.0221 0.1003 0.0061 MAE 

0.174 0.5661 0.1005 0.0912 0.1002 0.0110 SMAPE 
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(a) 

 
(b) 

Fig9. Trajectory of an overtaking behavior for only one vehicle of the validation dataset: (a) motorcycle, (b) auto. 

 

Fig10. Distinguishing the 3 phases of an overtaking trajectory 

 

The 3 phases of an overtaking behavior can be 

distinguished from Fig. 10. In Fig. 10(a), the start 

point of the figure with the coordinates of x=3.93 and 

y=419, is the start point of phase one. As the 

motorcycle continues to go to the left lane (mostly 

changing the x coordinate), it is the 1st phase of the 

behavior, up to point around x=3.62 and y=445. The 

second phase starts as the motorcycle starts to change 

its y coordinate from this point to around point 

x=3.43 and y=460, it is moving straight and it can be 

said that it is moving in a straight path and only it’s y 

coordinate is changing. From this point to the end of 

the trajectory (x=3.92 and y=480), the motorcycle is 

going back to its initial lane, and it can be said that 

mostly, only  it’s x coordinate is changing in 

comparison with its y coordinate. These phases are 

separated from each other in Fig. 10 by double 

arrows. 
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The optimal trajectory model offers three different 

trajectories for the three different phases of an 

overtaking maneuver. The lane change for the third 

phase of the maneuver has the equations which are 

mentioned in equation (2) and (3). For the trajectory 

of the first lane change, Shamir only used symmetry 

and time reversal. And for the trajectory of the second 

phase, which is the passing phase, Shamir defines the 

optimal time and distance which must be traveled. 

These parameters are calculated according to 

equations (6) and (7). Then he assumed that in this 

phase the lateral displacement is the width of the lane 

(W), and the longitudinal distance is equal to the 

optimal distance (D (b)). 

Notice that the MANFIS model and the optimal 

model present the lateral and longitudinal coordinates 

with unlike parameters. In the MANFIS model, lateral 

coordinate is shown by x and the longitudinal 

coordinate is shown by y. But in the optimal model, 

the names of the parameters are vice versa. Another 

point that must be noted is that in the optimal model, 

the horizontal axis shows the longitudinal coordinate 

of the trajectory, and the vertical axis shows the 

lateral coordinate of the trajectory. For the data of the 

same auto used in Fig. 10 (b), the optimal trajectory 

model offers the trajectory shown in Fig. 11. 

In order to compare the performance of the two 

models numerically, some parameters of the 

trajectories shown in Fig. 10 b) and Fig. 11 are 

compared with the real overtaking trajectory in 

TABLE V. 

Despite the similarity in the range of some of the 

parameters shown in TABLE V, major differences 

exist between the real and optimal trajectory. One 

disadvantage of the optimal model is that the lateral 

distance traveled is always equal to the width of the 

road (W). But in reality, it does not happen as ideal as 

the optimal model shows. Due to this characteristic, 

the second phase always starts from a point with 

lateral coordinate equal to W. Therefore, the 

trajectory of the first phase always starts from a point 

with negative coordinate x. All the trajectories 

resulted by this model have this property. Because of 

this property, the start and final points of the 

trajectory are not even close to reality. Having three 

distinct trajectories instead of a continuous one, 

similar to the real trajectory, is another disadvantage 

of the optimal model. In addition, the optimal model 

isn’t able to predict the trajectory for test vehicles 

with negative or zero longitudinal acceleration, but 

the MANFIS model is completely capable of 

predicting the trajectory for different values of the 

longitudinal acceleration. Also, for cases with 

positive longitudinal acceleration, the model does not 

have a proper result when the value of the 

longitudinal acceleration increases

 

 
Fig11. The optimal trajectory for the same auto. 

TABLE V Comparison of the parameters of the two models with real data. 

 

arameters of the trajectories of test vehicle 1 Real data MANFIS model Optimal model 

Time (s) 46.8 46.8 34.65 

Lateral distance (m) 4.6 4.7 3.6 

Longitudinal distance (m) 473 474 399 

Coordinate x of the start point (m) 20.38 20.38 -0.02 

Coordinate y of the start point (m) 30.29 30.31 -83.59 

Coordinate x of the end point (m) 19.24 22.32 -0.02 

Coordinate y of the end point (m) 516 510 316 
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(a) 

 
(b) 

 
Fig12. Comparison of the results of the two models with real data for one test vehicles 

In these situations, the trajectory for the lane 

change phases of the maneuver will not be a smooth 

trajectory anymore. Another problem is that in the 

optimal model, the total time of the maneuver is not 

equal to the time spent in reality. One more 

disadvantage is about the total distance traveled 

during the maneuver. The optimal model isn’t able to 

predict the total distance correctly. So, in some cases 

the distance is more than the real distance, and 

sometimes it is less. 

Here, in order to have a better comparison 

between the trajectories of the two models, the 

trajectory of the optimal model is rotated. Then, the 

trajectory is shifted to the start point of the real 

trajectory. After rotation, in both trajectories, the 

horizontal axis shows the lateral displacement, and 

the vertical axis shows the longitudinal displacement. 

The comparison of the output of the two models with 

real data for the same test vehicle used in Fig 10 (b) 

and Fig. 11, is shown in Fig. 12 (a). In Fig 12 (b), 

another comparison of the three trajectories is shown. 

For this case, the longitudinal acceleration of the test 

vehicle was more than the previous case. As it is 

shown, the trajectory of the lane change phases is not 

a uniform trajectory. 

To examine the performance of the developed 

models, various error criteria are used. But since the 

total time of the trajectory of the optimal model is not 

equal to the time in real trajectory data, it is not 

possible to calculate these criteria for this model. So, 

the results of these criteria are only calculated for the 

MANFIS model. 

To evaluate the performance of the trajectory 

prediction MANFIS model, two-variable error criteria 

must be used. It is emphasized here that this model 

has two outputs, namely, the lateral and longitudinal 

coordinates. To evaluate the true accuracy of the 

trajectory, hence, it is necessary that one uses a two-

variable evaluating criteria. If simply a one-variable 

error criterion such as the MSE or MAPE for each of 

the outputs is used for the trajectory evaluation, the 

result for the trajectory can be misleading. Therefore, 

it is not logical to evaluate the accuracy of the lateral 

and longitudinal coordinates separately for a total 

trajectory evaluation. An acceptable trajectory is one 

which matches the real trajectory considering both 

lateral and longitudinal coordinates. So, two-variable 

error criteria will be used. 

The average absolute horizontal transport 

deviation (AHTD), according to equation (14), shows 

the mean deviation between a modeled trajectory and 

the corresponding true trajectory. The trajectory based 

on field data is considered as true trajectory. Another 

useful statistical concept is the average relative 

horizontal deviation (RHTD), according to equation 

(15). This is defined as the ratio between the absolute 

transport deviation and the mean total travel distance 

of the true trajectory (�����), according to equation 
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(16). In these equations,  !���  and �!��� , 

respectively, show the real and model value of the 

coordinate x. In addition, "!���  and �!���  show the 

real and model value of the coordinate y. N is the 

number of test observations at travel time t [54, 55]. 
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     (16) 
 Errors in modeling the trajectory of the overtake 

maneuver of a motorcycle and an auto, considering 

these criteria are summarized in TABLE VI and 

TABLE VII. The last row of tables shows the mean 

value of each error criteria. 

In order to complete validating the designed 

models, it is necessary to state several points about 

the designed models. First of all, it is stressed that the 

datasets used in this study for the training of the 

Neural Network are quite comprehensive, rather 

global, and inclusive of a good many number of 

driving situations, initiated and provided by the well-

respected, well-known entity known as the US 

Department of Transportation (US DOT) Federal 

Highway Administration (FHWA) through a program 

known as The Next Generation Simulation 

(NGSIM) program. These datasets record the 

behavior of a Driver-Vehicle-Unit (DVU) without the 

awareness of drivers. So, each driver acted as usual as 

he/she did, therefore the dataset was comprised from 

different patterns of drivers. As a result, the range of 

the variables was as widespread as the number of 

DVUs in the recording area. These datasets consist of 

detailed vehicle trajectory, wide-area detector, and 

supporting data for researching driver behavior. The 

vehicle trajectory data, which were collected using 

digital video cameras, are particularly valuable due to 

the unprecedented level of detail and accuracy. For 

example, the precise location of each vehicle on a 0.5- 

to 1.0-kilometer section of roadway is recorded every 

one-tenth of a second. As a result, transportation 

practitioners will be able to develop Driver-Vehicle 

Unit (DVU) behavior models using high-quality, real-

world datasets. Although the datasets were recorded 

during the peak field, they have recorded a wide 

range of driver behaviors which approximately 

contain most of the possible behaviors in a highway. 

In other words, different ranges of important variables 

like acceleration, velocity and position have been 

recorded. As a result, the developed models in this 

study have satisfactory responses for mostly all the 

test vehicles that were fed to the models. As such, it is 

the strong opinion of the authors that the MANFIS 

models devised here in this work will be able to 

respond properly in most, if not all, driving cases. 

Therefore, the models presented here may not be 

required to be retrained with new datasets and can be 

used in an “archival” manner, as put forth by the 

respected reviewer. 2- The very concern of the need 

to retrain a Neural Network for “new” situations in an 

offline training session is a well-known drawback in 

the general employment of Neural Network concept. 

This is a drawback of Neural Networks in general, 

and not of the present paper. In fact, we state that, 

though not used in our current work, we present a 

possible solution to this NN problem or concern by 

proposing that one can use an ONLINE neural 

network training methodology (such as a recurrent or 

dynamic network) to train the NN while it is being 

used and as the data is being generated in real time. 

Also, it is also necessary to explain that all the 

figures in this paper show only the data of one single 

overtaking behavior and they are not the data of the 

entire test dataset 

 
TABLE VI. Error for the MANFIS Overtaking Model for Motorcycle 

Error Criteria AHTD (m) RHTD (%) 

Test motorcycle 1 0.0967 0.2336 

Test motorcycle 2 0.0073 0.0118 

Test motorcycle 3 0.1225 0.4589 

Test motorcycle 4 0.0402 0.0855 

Mean 0.0665 0.1974 
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TABLE VII. Error for the MANFIS Overtaking Model for Auto 

Error Criteria AHTD (m) RHTD (%) 

Test Vehicle1 0.0049 0.0034 

Test Vehicle2 0.0065 0.0105 

Test Vehicle3 0.0019 3.5e-004 

Test Vehicle4 0.0139 0.0028 

Mean 0.0068 0.0042 

 

 

(a) 

 

(b) 

Fig13. Comparison of the range of velocities, (a) test vehicle of Fig. 7, (b) test vehicle of Fig. 9. 

 

About the range of variations of the movement 

angle, it should be stated that this range is different 

for each vehicle. It is due to the different ranges of 

velocity that each vehicle has. With lower velocities, 

drivers need to increase the movement angle to 

change lane. But with higher velocity, drivers can 

change lane with a slight difference in the range of 

movement angle. For example, for the test vehicle 

used for Fig. 7 which had a movement angle between 

10 to -30 degrees, the velocity of the vehicle is 

between 4.5m/s to 9.5m/s (16.2-34.2km/h). But for 

the test vehicle of Fig. 9, the velocity of the vehicle is 

between 7m/s to 21 m/s (25.2-72km/h). In Fig. 13, the 

velocities of these two vehicles are shown. 

Conclusion 

In this paper, two novel overtaking models were 

proposed. These models consider important factors 

such as longitudinal and lateral distance, velocity, and 
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the longitudinal acceleration and movement angle 

of the overtaking vehicle. Satisfactory performance of 

the proposed model was demonstrated through 

comparisons with real traffic data. The simulation 

tests for different experimental configurations have 

shown the effectiveness of the proposed overtaking 

models. This effectiveness was in prediction of the 

future value of the longitudinal acceleration and 

movement angle of the overtaking vehicle. Using the 

instantaneous value of the parameters to predict the 

future value of them is the prominent aspect of the 

proposed overtaking model. 

By using the results of the suggested model driver 

assistant systems equipped with appropriate sensors, 

can estimate the longitudinal acceleration and 

movement angle for its future movement. 

The proposed method can be recruited in driver 

assistant devices, safe distance keeping observers, 

collision prevention systems and other ITS 

applications. 

Satisfactory performance of the proposed model 

was demonstrated through comparisons with real 

traffic data and the result of another model named the 

optimal model. 

As table II shows, the MANFIS overtaking model 

based on instantaneous value of the parameters is 

very close to the real trajectory data. This result 

shows that these MANFIS models have a strong 

capability with respect to other models. 
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